Below are the list of all sequence and series formulas;



ARITHMETIC SEQUENCE OR

ARITHMETIC PROGRESSION (A.P):

    
To find the nth term of Arithmetic Progressions are
        
          ` T_n = a + \ left( n - 1 \ right) d `


    Where;

    ` a ` = first term ,

    ` d ` = difference , 

    ` n ` = number of terms ,

    ` T_n ` = nth term or last term or general term or rule of formation


    To find the number of terms of Arithmetic Progressions are
        
        ` n = \ frac{ T_n - a } d+1 `


    To find the difference of Arithmetic Progressions are
        
            Difference = Second term - First term

OR

            ` d = \ frac{ T_n - a } { n-1 } `



ARITHMETIC SERIES:


To find the sum of Arithmetic Progressions are
 

    ` S_n = \ frac{ n } { 2 } \ [ 2 a + (n - 1 ) d ]`


OR

    
    ` S_n = \ frac{ n } { 2 } \ ( a + l )`



ARITHMETIC MEANS:


The formula to find the arithmetic mean are given as;

    ` A.M = \ frac{ a+b } { 2 } `


When you have more than one arithmetic mean, first you can find d by using this formula;

    ` d = \ frac{ b-a } { n+1 } `


Then, you can find n(number of) arithmetic means;

    ` A_1 = a + 1 d `

    ` A_2 = a + 2 d `

    ` A_3 = a + 3 d `
    
        .
        .
        .
    
    ` A_n = a + n d `        



WHEN TERMS ARE IN ARITHMETIC

PROGRESSION:


When three numbers are in Arithmetic Progression (A.P)

    First number are in Arithmetic Progression (A.P) = ` a - d `

    Second number are in Arithmetic Progression (A.P) = ` a `

    Third number are in Arithmetic Progression (A.P) = ` a + d `



When four numbers are in Arithmetic Progression (A.P)

    First number are in Arithmetic Progression (A.P) = ` a - 3 d `

    Second number are in Arithmetic Progression (A.P) = ` a - d `

    Third number are in Arithmetic Progression (A.P) = ` a + d `

    Fourth number are in Arithmetic Progression (A.P) = ` a + 3 d `



When five numbers are in Arithmetic Progression (A.P)

    First number are in Arithmetic Progression (A.P) = ` a - 2 d `

    Second number are in Arithmetic Progression (A.P) = ` a - d `

    Third number are in Arithmetic Progression (A.P) = ` a `

    Fourth number are in Arithmetic Progression (A.P) = ` a + d `

    Fifth number are in Arithmetic Progression (A.P) = ` a + 2 d `



GEOMETRIC  SEQUENCE OR

GEOMETRIC PROGRESSION (G.P):


To find the nth term of Geometric Progressions are

    ` T_n = a r^{ n-1 } `


    Where;

    ` a ` = first term ,

    ` r ` = ratio ,

    ` n ` = number of terms ,

    ` T_n ` = nth term or last term or general term or rule of formation


To find the ratio of Geometric Progressions are
        
            ratio = Second term ` \div ` First term


GEOMETRIC SERIES:


There are two formulas to find the sum of geometric series formulas;


When r > 1

        ` S_n = \ frac{ a \ left( r ^ n - 1 \ right) } { r - 1 } `
     

OR


        ` S_n = \ frac{ r l - a } { r - 1 } `


When r < 1  
  

        ` S_n = \ frac{ a \ left( 1 - r ^ n \ right) } { 1 - r } `


OR


        ` S_n = \ frac{ a - r l } { 1 - r } `



INFINITE GEOMETRIC SERIES:


The formula to find the sum of infinite geometric series are given as;

   
      ` S = \ frac{ a } { 1-r } `


GEOMETRIC MEANS:


The formula to find the geometric mean are given as;

    ` G.M = \  pm \ sqrt { a b } `


When you have more than one geometric mean, first you can find r by using this formula;

    ` r = \ left( \ frac b a \ right) ^ \frac { 1 } { n+1 } `


Then, you can find n(number of) geometric means;

    ` G_1 = a r ^ 1 `

    ` G_2 = a r ^ 2 `

    ` G_3 = a r ^ 3 `
    
        .
        .
        .

    ` G_n = a r ^ n `



WHEN TERMS ARE IN GEOMETRIC

 PROGRESSION:


When three numbers are in Geometric Progression (G.P)

    First number are in Geometric Progression (G.P) = ` \frac a r `

    Second number are in Geometric Progression (G.P) = ` a `

    Third number are in Geometric Progression (G.P) = ` a r `



When four numbers are in Geometric Progression (G.P)

    First number are in Geometric Progression (G.P) = ` \ frac a { r^3 } `

    Second number are in Geometric Progression (G.P) = ` \frac a r `

    Third number are in Geometric Progression (G.P) = ` a r `

    Fourth number are in Geometric Progression (G.P) = ` a r^3 `



When five numbers are in Geometric Progression (G.P)

    First number are in Geometric Progression (G.P) = ` \ frac a { r^2 } `

    Second number are in Geometric Progression (G.P) = ` \frac a r `

    Third number are in Geometric Progression (G.P) = ` a `

    Fourth number are in Geometric Progression (G.P) = ` a r `

    Fifth number are in Geometric Progression (G.P) = ` a r^2 `



HARMONIC SEQUENCE OR

HARMONIC PROGRESSION (H.P):


To find the nth term of Harmonic Progressions are


    ` T_n = \ frac{ a b } { b + \ left( n - 1 \ right) \ left( a - b \ right) } `



HARMONIC MEANS:


The formula to find the harmonic mean are given as;

    ` H.M = \ frac{ 2 a b } { a+b } `


When you have more than one harmonic mean, first you can find d by using this formula;


    ` d = \ frac{ ( a - b ) } { left( n - 1 \ right) \ a b } `


Then, you can find n(number of) harmonic means;


    ` H_1 = \ frac{ \ left( n + 1 \ right) ab } { a + nb } `


    ` H_2 = \ frac{ \ left( n + 1 \ right) ab } { 2a + \ left( n - 1 \ right) b } `


    ` H_3 = \ frac{ \ left( n + 1 \ right) ab } { 3a + \ left( n - 2 \ right) b } `
    
        .
        .
        .

    ` H_n = \ frac{ \ left( n + 1 \ right) ab } { na + b } `