Below are the list of all sequence and series formulas;



ARITHMETIC SEQUENCE OR

ARITHMETIC PROGRESSION (A.P):

    
To find the nth term of Arithmetic Progressions are
        
          Tn=a+ 


    Where;

    a = first term ,

    d = difference , 

    n = number of terms ,

     T_n = nth term or last term or general term or rule of formation


    To find the number of terms of Arithmetic Progressions are
        
         n = \ frac{ T_n - a } d+1


    To find the difference of Arithmetic Progressions are
        
            Difference = Second term - First term

OR

             d = \ frac{ T_n - a } { n-1 }



ARITHMETIC SERIES:


To find the sum of Arithmetic Progressions are
 

     S_n = \ frac{ n } { 2 } \ [ 2 a + (n - 1 ) d ]


OR

    
     S_n = \ frac{ n } { 2 } \ ( a + l )



ARITHMETIC MEANS:


The formula to find the arithmetic mean are given as;

     A.M = \ frac{ a+b } { 2 }


When you have more than one arithmetic mean, first you can find d by using this formula;

     d = \ frac{ b-a } { n+1 }


Then, you can find n(number of) arithmetic means;

     A_1 = a + 1 d

     A_2 = a + 2 d

     A_3 = a + 3 d
    
        .
        .
        .
    
     A_n = a + n d         



WHEN TERMS ARE IN ARITHMETIC

PROGRESSION:


When three numbers are in Arithmetic Progression (A.P)

    First number are in Arithmetic Progression (A.P) =  a - d

    Second number are in Arithmetic Progression (A.P) =  a

    Third number are in Arithmetic Progression (A.P) =  a + d



When four numbers are in Arithmetic Progression (A.P)

    First number are in Arithmetic Progression (A.P) =  a - 3 d

    Second number are in Arithmetic Progression (A.P) =  a - d

    Third number are in Arithmetic Progression (A.P) =  a + d

    Fourth number are in Arithmetic Progression (A.P) =  a + 3 d



When five numbers are in Arithmetic Progression (A.P)

    First number are in Arithmetic Progression (A.P) =  a - 2 d

    Second number are in Arithmetic Progression (A.P) =  a - d

    Third number are in Arithmetic Progression (A.P) =  a

    Fourth number are in Arithmetic Progression (A.P) =  a + d

    Fifth number are in Arithmetic Progression (A.P) =  a + 2 d



GEOMETRIC  SEQUENCE OR

GEOMETRIC PROGRESSION (G.P):


To find the nth term of Geometric Progressions are

     T_n = a r^{ n-1 }


    Where;

    a = first term ,

    r = ratio ,

    n = number of terms ,

     T_n = nth term or last term or general term or rule of formation


To find the ratio of Geometric Progressions are
        
            ratio = Second term  \div First term


GEOMETRIC SERIES:


There are two formulas to find the sum of geometric series formulas;


When r > 1

         S_n = \ frac{ a \ left( r ^ n - 1 \ right) } { r - 1 } 
     

OR


         S_n = \ frac{ r l - a } { r - 1 } 


When r < 1  
  

         S_n = \ frac{ a \ left( 1 - r ^ n \ right) } { 1 - r } 


OR


         S_n = \ frac{ a - r l } { 1 - r } 



INFINITE GEOMETRIC SERIES:


The formula to find the sum of infinite geometric series are given as;

   
       S = \ frac{ a } { 1-r }


GEOMETRIC MEANS:


The formula to find the geometric mean are given as;

     G.M = \  pm \ sqrt { a b }


When you have more than one geometric mean, first you can find r by using this formula;

     r = \ left( \ frac b a \ right) ^ \frac { 1 } { n+1 }


Then, you can find n(number of) geometric means;

     G_1 = a r ^ 1

     G_2 = a r ^ 2

     G_3 = a r ^ 3
    
        .
        .
        .

     G_n = a r ^ n



WHEN TERMS ARE IN GEOMETRIC

 PROGRESSION:


When three numbers are in Geometric Progression (G.P)

    First number are in Geometric Progression (G.P) =  \frac a r

    Second number are in Geometric Progression (G.P) =  a

    Third number are in Geometric Progression (G.P) =  a r



When four numbers are in Geometric Progression (G.P)

    First number are in Geometric Progression (G.P) = \ frac a { r^3 }

    Second number are in Geometric Progression (G.P) =  \frac a r

    Third number are in Geometric Progression (G.P) =  a r

    Fourth number are in Geometric Progression (G.P) =  a r^3



When five numbers are in Geometric Progression (G.P)

    First number are in Geometric Progression (G.P) = \ frac a { r^2 }

    Second number are in Geometric Progression (G.P) =  \frac a r

    Third number are in Geometric Progression (G.P) = a

    Fourth number are in Geometric Progression (G.P) =  a r

    Fifth number are in Geometric Progression (G.P) =  a r^2



HARMONIC SEQUENCE OR

HARMONIC PROGRESSION (H.P):


To find the nth term of Harmonic Progressions are


     T_n = \ frac{ a b } { b + \ left( n - 1 \ right) \ left( a - b \ right) }



HARMONIC MEANS:


The formula to find the harmonic mean are given as;

     H.M = \ frac{ 2 a b } { a+b }


When you have more than one harmonic mean, first you can find d by using this formula;


     d = \ frac{ ( a - b ) } { left( n - 1 \ right) \ a b }


Then, you can find n(number of) harmonic means;


     H_1 = \ frac{ \ left( n + 1 \ right) ab } { a + nb }


     H_2 = \ frac{ \ left( n + 1 \ right) ab } { 2a + \ left( n - 1 \ right) b }


     H_3 = \ frac{ \ left( n + 1 \ right) ab } { 3a + \ left( n - 2 \ right) b }
    
        .
        .
        .

     H_n = \ frac{ \ left( n + 1 \ right) ab } { na + b }