BINOMIAL THEOREM FORMULAS: 

    Below are the list of some important formulas;

 




BINOMIAL THEOREM:


` \ left( a + b \ right) ^ n = a^n + \ ^ n C_1 \ a ^ { n-1 } b^1 + \ ^ n C_2 \ a ^ { n-2 } b^2 + \ ^ n C_3 \ a ^ { n-3 } b^3 + \ cdot \ cdot \ cdot + \ ^ n C_n \ a ^ { n-n } b^n `


` \ left( a - b \ right) ^ n = a^n - \ ^ n C_1 \ a ^ { n-1 } b^1 + \ ^ n C_2 \ a ^ { n-2 } b^2 - \ ^ n C_3 \ a ^ { n-3 } b^3 + \ cdot \ cdot \ cdot + \ ^ n C_n \ a ^ { n-n } b^n `


COMBINATION:


` \ ^ n C_r = \ frac { n! } { r! ( n - r) ! } `


PERMUTATION:


` \ ^ n P_r = \ frac { n! } { ( n - r) ! } `


THE GENERAL TERM:

    
    The term shows below is called the general term in the expansion of ` \ left( a + b \ right) ^ n ` for a positive integral index n.

` T_{r+1} = \ ^ n C_r \ a ^{ n-r } \ b^r `


MIDDLE TERMS:


    We shall find the middle term or terms in the expansion of ` \ left( a + b \ right) ^ n ` , n.


    If n = even, we have find only one terms by using this formula

            ` \ frac { n+2 } 2 `

    If n = odd, we have find only two terms by using this formula

            ` \ frac { n+1 } 2 `

            ` \ frac{ n+3 } 2 `


BINOMIAL SERIES:


Statement 1:
    
    If n is a positive integer and | x | < 1 then

` \ left( 1 + x \ right) ^ n = 1 + nx + \ frac{ n ( n-1 ) } { 2 ! } x ^ 2 + \ cdot \ cdot \ cdot + \ frac{ n ( n-1 ) ( n-2 ) \ cdot \ cdot \ cdot ( n-r+1 ) x^r } { r ! } `


Statement 2:

    If n is a positive integer and replacing x by -x then

` \ left( 1 - x \ right) ^ { n } = 1 - nx + \ frac{ n ( n-1 ) } { 2 ! } x ^ 2 + \ cdot \ cdot \ cdot + ( -1 )  ^r \  \ frac{ n ( n-1 ) ( n-2 ) \ cdot \ cdot \ cdot ( n-r+1 ) } { r ! } x^r `


Statement 3:

    Changing the sign of n in statement 1 then

` \ left( 1 + x \ right) ^ { -n } = 1 - nx + \ frac{ n ( n+1 ) } { 2 ! } x ^ 2 - \ cdot \ cdot \ cdot + ( -1 )  ^r \  \ frac{ n ( n+1 ) ( n+2 ) \ cdot \ cdot \ cdot ( n+r-1 ) } { r ! } x^r `


Statement 4:

    Changing the sign of in statement 2 then

` \ left( 1 - x \ right) ^ { -n } = 1 + nx + \ frac{ n ( n+1 ) }{ 2 ! } x ^ 2 + \ cdot \ cdot \ cdot + ( -1 ) ^r \  \ frac{ n ( n+1) ( n+2 ) \ cdot \ cdot \ cdot ( n+r-1 ) } { r ! } x^r `


    Here, for | x | < 1,


Statement 5:

` ( 1 + x ) ^ { -1 } = 1 - x + x ^ 2 - x ^ 3 + \ cdot \ cdot \ cdot + ( -1 ) ^ r x ^ r + \ cdot \ cdot \ cdot `


Statement 6:

` ( 1 - x ) ^ { -1 } = 1 + x + x ^ 2 + x ^ 3 + \ cdot \ cdot \ cdot + x ^ r + \ cdot \ cdot \ cdot `


Statement 7:

` ( 1 + x ) ^ { -2 } = 1 - 2 x + 3 x ^ 2 - 4 x ^ 3 + \ cdot \ cdot \ cdot +( -1 ) ^ r ( r + 1 ) x ^ r + \ cdot \ cdot \ cdot `


Statement 8:

` ( 1 - x ) ^ { -2 } = 1 + 2 x + 3 x ^ 2 + 4 x ^ 3 + \ cdot \ cdot \ cdot +( r + 1 ) x ^ r + \ cdot \ cdot \ cdot `