How to Solve Quadratic Equation ?
QUADRATIC EQUATION ?
A quadratic equation in x is an equation that can be written in the standard form` a x^2 + b x + c = 0 `
where a, b, and c are real numbers and a ` \neq ` 0.
a represents the numerical coefficient of ` x^2 ` , b represents the numerical coefficient of ` x ` , and c represents the constant numerical term.
Example:
` 2 x^2 = 0 ` ` 2 x^2 - 50 =0 ` ` 2 x^2 - 7 x = 0 ` ` 5 x^2 - 3 x + 3 = 0 `
Before you solve the quadratic equation, you need to check the quadratic equation must be in standard form.
A quadratic equation in x is an equation that can be written in the standard form
` a x^2 + b x + c = 0 `
where a, b, and c are real numbers and a ` \neq ` 0.
a represents the numerical coefficient of ` x^2 ` ,
b represents the numerical coefficient of ` x ` , and
c represents the constant numerical term.
Example:
` 2 x^2 = 0 `
` 2 x^2 - 50 =0 `
` 2 x^2 - 7 x = 0 `
` 5 x^2 - 3 x + 3 = 0 `
Before you solve the quadratic equation, you need to check the quadratic equation must be in standard form.
FORMULA:
` \ frac { - b \ pm \ sqrt { b ^ 2 - 4 a c } } { 2 a } \ `
` \ frac { - b \ pm \ sqrt { b ^ 2 - 4 a c } } { 2 a } \ `
METHODS:
There are three methods to solve quadratic equation:
1. Quadratic formula
2. Middle term breaking
3. Factorization
EXAMPLE QUESTION:
Q) `6x^2-x-2=0`
Q) `6x^2-x-2=0`
1. QUADRATIC FORMULA:
Solution:
`6x^2-x-2=0`
Using the quadratic formula;
` x = \ frac { - b \ pm \ sqrt { b ^ 2 - 4 a c } } { 2 a } \ `
` x = \ frac { - ( -1 ) \ pm \ sqrt { ( -1 )^2 -4 (6) (-2) } } { 2(6) } \ `
` x = \ frac { 1 \ pm \ sqrt { ( 1 ) + ( 48 ) } } { 12 } \ `
` x = \ frac { 1 \ pm \ sqrt { 49 } } { 12 } \ `
` x = \ frac { 1 \ pm \ 7 } { 12 } \ `
either ; or
` x = \ frac { 1+7 } { 12 } ` ; ` x = \ frac { 1-7 } { 12 }`
` x = \ frac 8 { 12 } ` ; ` x = \ frac { -6 } { 12 } `
` x = \ frac 2 \ 3 ` ; ` x = \ frac - 1 \ 2`
Hence,
Solution Set = { ` \ frac 2 \ 3 ` , ` \ frac -1 \ 2 ` }
Solution:
`6x^2-x-2=0`
Using the quadratic formula;
` x = \ frac { - b \ pm \ sqrt { b ^ 2 - 4 a c } } { 2 a } \ `
` x = \ frac { - ( -1 ) \ pm \ sqrt { ( -1 )^2 -4 (6) (-2) } } { 2(6) } \ `
` x = \ frac { 1 \ pm \ sqrt { ( 1 ) + ( 48 ) } } { 12 } \ `
` x = \ frac { 1 \ pm \ sqrt { 49 } } { 12 } \ `
` x = \ frac { 1 \ pm \ 7 } { 12 } \ `
either ; or
` x = \ frac { 1+7 } { 12 } ` ; ` x = \ frac { 1-7 } { 12 }`
` x = \ frac 8 { 12 } ` ; ` x = \ frac { -6 } { 12 } `
` x = \ frac 2 \ 3 ` ; ` x = \ frac - 1 \ 2`
Hence,
Solution Set = { ` \ frac 2 \ 3 ` , ` \ frac -1 \ 2 ` }
2. MIDDLE TERM BREAKING:
Solution:
Solution:
3. FACTORIZATION:
Solution:
Solution: