Trigonometric Formulas: 

    Below are the list of all trigonometric functions formulas;

  





Basic Formulas:


` \ sin \ left( \theta\right) \ = \ \ frac1 {\ csc( \theta)}\ `

OR

` \ csc \ left( \theta\right)\ = \ \ frac1 {\ sin\ left( \theta\right)}`

=====

` \ cos \ left( \theta\right) \ = \ \ frac1 {\ sec( \theta)}\ `

 OR

` sec \ left( \theta\right) \ = \ \ frac1 {\ cos\ left( \theta\right)} `

=====


` \ tan\ left( \theta\right) \ = \ \frac {\ sin\ left( \theta\right)}{\ cos\ left( \theta\right)}\ `

OR

` \ tan\ left( \theta\right) \ = \ \frac1 {\ cot\ left( \theta\right)} `

=====

` \ cot\ left( \theta\right)\ = \ \ frac {\ cos\ left( \theta\right)}{\ sin \ left( \theta\right)}`

OR

` \ cot \ left( \theta\right) \ = \ \ frac1 {\ tan\ left( \theta\right)} `

=====

` \ sin^2\ left( \theta\right) \ + \ \ cos^2 \ left( \theta\right)\ = \ 1 \ `

OR

` \ sin^2\ left( \theta\right) \ = \ 1 \ - \  \ cos^2 \ left( \theta\right) `

OR

` \ cos^2 \ left( \theta\right) \ = \ 1 \ - \ \ sin^2 \ left( \theta\right) `

=====

` 1 \ + \ \ tan^2 \ left( \theta\right) \ = \ \ sec^2 \ left( \theta\right) `

OR

` \ tan^2 \ left( \theta\right) \ = \ \ sec^2 \ left(\theta\right) \ - \ 1 `

=====

` 1 \ + \ \cot^2\ left( \theta\right) \ = \ \ csc^2 \ left(\theta\right) `

OR

` \ cot^2 \ left( \theta\right) \ = \ \ csc^2 \ left( \theta\right) \ - \ 1 `

=====

NEGATIVE(-ve) ANGLE FORMULAS:


` \ sin \ left( -\theta\right) \ =\ - \ sin\ left( \theta\right) `

` \ cos \ left( -\theta\right) \ = \ \ cos\ left( \theta\right) `

` \ tan \ left( -\theta\right) \ = \ - \ tan\ left( \theta\right) `

` \ cot \ left( -\theta\right) \ = \ - \ cot\ left( \theta\right) ` 

` \ sec \ left( -\theta\right) \ =\ \ sec\ left( \theta\right) `

` \ csc \ left( -\theta\right) \ = \ - \ csc\ left( \theta\right) `


DOUBLE ANGLE FORMULAS:


` \ sin \ left( 2\theta\right) \ = \ 2 \ sin\ left( \theta\right) \ cos\ left( \theta\right) `

OR

` \ sin \ left( 2\theta\right)\ = \ \ frac { 2 \tan\left( \theta\right)}{ 1\ + \ \ tan^2\ left( \theta\right)} `

=====

` \ cos \ left( 2\theta\right) \ = \ \ cos^2\ left( \theta\right)\ -\ \ sin^2\ left( \theta\right) `

OR

` \ cos \ left( 2\theta\right) \ = \ 2 \ cos^2 \ left( \theta\right)\ - \ 1 `

OR

` \ cos \ left( 2\theta\right) \ = \ 1\ - \ 2 \ sin^2\ left( \theta\right) `

OR

` \ cos \ left( 2\theta\right) \ = \ \ frac {1\ - \ \ tan^2\ left( \theta\right)}{1\ + \ \ tan^2\ left( \theta\right)} `

= = = = =


` \ tan \ left( 2\theta\right) \ = \ \ frac { 2 \ tan \ left( \theta\right)}{ 1-\ tan^2\ left( \theta\right)} `


HALF ANGLE FORMULAS:


` \ sin \ left( \ frac \alpha2\ right) \ = \ \ pm \ sqrt{ \ frac { 1- \ cos\ left( \ alpha \ right)} 2} `

` \ cos \ left( \ frac \alpha2\ right) \ = \ \ pm \ sqrt{ \ frac { 1+ \ cos\ left( \ alpha \ right)} 2} `

` \ tan \ left( \ frac \alpha2\ right) \ = \ pm \ sqrt{ \ frac{1 - \ cos\ left( \ alpha \ right)} {1 + \ cos\ left( \ alpha \ right)}} `


FUNDAMENTAL LAWS:


` \ sin \ left( \ alpha + \ beta \ right) = \ sin\ left( \ alpha \ right) \ cos\ left( \ beta \ right) + \ cos\ left( \ alpha \ right)\ sin\ left(\ beta \ right) `

` \ sin\ left( \ alpha - \ beta \ right) = \ sin\ left( \ alpha \ right) \ cos\ left( \ beta \ right) - \ cos\ left( \ alpha \ right)\ sin\ left(\ beta \ right) `

` \ cos\ left( \ alpha + \ beta \ right) = \ cos\ left( \ alpha \ right) \ cos\ left( \ beta \ right) - \ sin\ left( \ alpha \ right)\ sin\ left(\ beta \ right) `

` \ cos\ left( \ alpha - \ beta \ right) = \ cos\ left( \ alpha \ right) \ cos\ left( \ beta \ right) + \ sin\ left( \ alpha \ right)\ sin\ left(\ beta \ right) `

` \ tan\ left( \ alpha + \ beta \ right) = \ frac {  \ tan \ left( \ alpha \ right) + \ tan\ left( \ beta \ right) } {1- \ tan\ left( \ alpha \ right) \ tan \ left( \ beta \ right) }`

`\ tan\ left( \ alpha -\ beta \ right) = \ frac { \ tan \ left( \ alpha \ right) -\ tan \ left( \ beta \ right) } {1 + \ tan\ left( \ alpha \ right) \ tan \ left( \ beta \ right) } `

` \ cot \ left( \ alpha + \ beta \ right) = \ frac { \ cot \ left( \ alpha \ right) \ cot\ left( \ beta \ right) - 1} { \ cot\ left( \ alpha \ right) + \ cot \ left( \ beta \ right)} `

` \ cot \ left( \ alpha -\ beta \ right) = \ frac { \ cot \ left( \ alpha \right) \ cot\ left( \ beta \ right) + 1} { \ cot\ left( \ beta \ right) - \ cot \ left( \ alpha \ right)} `


PRODUCT TO SUM FORMULAS:


` \ sin \ left( \ alpha \ right) \ \ cos \ left( \ beta \ right) = \ frac1\2 \ left[ \ sin \ left( \ alpha + \ beta \ right) + \ sin \ left( \ alpha - \ beta \ right) \ right] `

` \ cos \ left( \ alpha \ right) \ \ sin \ left( \ beta \ right) = \ frac1\2 \ left[ \ sin \ left( \ alpha + \ beta \ right) - \ sin \ left( \ alpha - \ beta \ right) \ right] `

` \ cos \ left( \ alpha \ right) \ \ cos \ left( \ beta \ right) = \ frac1\2 \ left[ \ cos \ left( \ alpha + \ beta \ right) + \ cos \ left( \ alpha - \ beta \ right) \ right] `

` \ sin \ left( \ alpha \ right) \ \ sin \ left( \ beta \ right) = - \ frac1\2 \ left[ \ cos \ left( \ alpha + \ beta \ right) - \ cos \ left( \ alpha - \ beta \ right) \ right] `


SUM TO PRODUCT FORMULAS:


` \ sin \ left( \ upsilon \ right) + \ sin \ left( \ nu \ right) = 2 \ sin \ left( \ frac { \ upsilon + \ nu} 2 \ right) \ cos \ left( \ frac { \ upsilon - \ nu} 2 \ right) `

` \ sin \ left( \ upsilon \ right) -\ sin \ left( \ nu \ right) = 2 \ cos \ left( \ frac { \ upsilon + \ nu} 2 \ right) \ sin \ left( \ frac { \ upsilon - \ nu} 2 \ right) `

` \ cos \ left( \ upsilon \ right) + \ cos \ left( \ nu \ right) = 2 \ cos \ left( \ frac { \ upsilon + \ nu} 2 \ right) \ cos \ left( \ frac { \ upsilon - \ nu} 2 \ right) `

` \ cos \ left( \ upsilon \ right) -\ cos \ left( \ nu \ right) = - 2 \ sin \ left( \ frac { \ upsilon + \ nu} 2 \ right) \ sin \ left( \ frac { \ upsilon - \ nu} 2 \ right) `


LAW OF SINE:


` \ frac { \ sin \ left( \ alpha \ right) } a = \ frac{ \ sin \ left( \ beta \ right) } b = \ frac{ \ sin \ left( \ gamma \ right) } c `

OR

` \ frac a { \ sin \ left( \ alpha \ right) } = \ frac b { \sin \ left( \ beta \ right) } = \ frac c { \ sin \ left( \ gamma \ right) } `

OR

` a \ : \ b \ : \ c \  = \  \ sin\ left( \ alpha \ right) \  : \  \ sin \ left( \ beta \ right) \ : \ \ sin \ left( \ gamma \ right) `


LAW OF COSINE:


` \ cos \ left( \ alpha \ right) = \ frac { b^2 + c^2 - a^2} { 2bc } `

OR

` a^2 = b^2 + c^2 -2bc \ cos \ left( \ alpha \ right) `

=====


` \ cos \ left( \ beta \ right) = \ frac { a^2 + c^2 - b^2} { 2ac } `

OR

` b^2 = a^2 + c^2 -2ac \ cos \ left( \ beta \ right) `

=====


` \ cos \ left( \ gamma \ right) = \ frac { a^2 + b^2 - c^2} { 2ab } `

OR

` c^2 = a^2 + b^2 -2ab \ cos \ left( \ gamma \ right) `


HALF ANGLE FORMULAS:


` \ sin \ left( \ frac \alpha2\ right) \ = \ sqrt { \ frac { (s-b) \ (s-c) } { bc } }`

` \ sin \ left( \ frac \beta2\ right) \ = \ sqrt { \ frac { (s-a) \ (s-c) } { ac } }`

` \ sin \ left( \ frac \gamma2\ right) \ = \ sqrt { \ frac { (s-a) \ (s-b) } { ab } }`

` \ cos \ left( \ frac \alpha2\ right) \ = \ sqrt { \ frac { s (s-a) } { bc } }`

` \ cos \ left( \ frac \beta2\ right) \ = \ sqrt { \ frac { s (s-b) } { ac } }`

` \ cos \ left( \ frac \gamma2\ right) \ = \ sqrt { \ frac { s (s-c) } { ab } }`

` \ tan \ left( \ frac \alpha2\ right) \ = \ sqrt { \ frac { (s-b) \ (s-c) } { s (s-a) } } `

` \ tan \ left( \ frac \beta2\ right) \ = \ sqrt { \ frac { (s-a) \ (s-c) } { s (s-b) } } `

` \ tan \ left( \ frac \gamma2\ right) \ = \ sqrt { \ frac { (s-a) \ (s-b) } { s (s-c) } } `


AREA OF A TRIANGLE:


` \ triangle = Area `


3 SIDES GIVEN:


` \ triangle = \ sqrt { s (s-a) (s-b) (s-c) } `

` s = \ frac { a + b + c } 2 `


2 SIDES INCLUDED ANGLE GIVEN:



` \ triangle = \ frac { bc \ sin \ left( \ alpha \ right) } 2 `

` \ triangle = \ frac { ac \ sin \ left( \ beta \ right) } 2 `

` \ triangle = \ frac { ab \ sin \ left( \ gamma \ right) } 2 `


1 SIDES INCLUDED 2 ANGLES GIVEN:


` \ triangle = \ frac { a^2 \ sin \ left( \ beta \ right) \ sin \ left( \ gamma \ right) } { 2 \ sin \ left( \ alpha \ right) } `

` \ triangle = \ frac { b^2 \ sin \ left( \ alpha \ right) \ sin \ left( \ gamma \ right) } { 2 \ sin \ left( \ beta \ right) } `

` \ triangle = \ frac { c^2 \ sin \ left( \ alpha \ right) \ sin \ left( \ beta \ right) } { 2 \ sin \ left( \ gamma \ right) } `


CIRCUM-RADIUS R IN TERMS OF THE MEASURE OF A THREE SIDES OF A  TRIANGLE:


`R \ = \ frac{ \ abc } { 4\triangle}`


THE IN-RADIUS OF A TRIANGLE:


` r = \ frac \triangle s`


RADII OF E-CIRCLES OF A TRIANGLE:


` r_1 = \ frac \triangle {s-a} `

` r_2 = \ frac \triangle {s-b} `

` r_3 = \ frac \triangle {s-c} `